• We seek to understand

    the role of microorganisms in Earth's nutrient cycles

    and as symbionts of other organisms

  • Cycling of carbon, nitrogen and sulfur

    affect the health of our planet

  • Ancient invaders -

    Bacterial symbionts of amoebae

    and the evolution of the intracellular lifestyle

  • The human microbiome -

    Our own social network of microbial friends

  • Single cell techniques offer new insights

    into the ecology of microbes

  • Apply for the DOME International PhD/PostDoc program

Dome News

Latest publications

Cyanate as an energy source for nitrifiers

Ammonia- and nitrite-oxidizing microorganisms are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and have essential roles in the global biogeochemical nitrogen cycle. The physiology of nitrifiers has been intensively studied, and urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis using cyanate as the sole source of energy and reductant; to our knowledge, the first organism known to do so. Cyanate, a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems, is converted to ammonium and carbon dioxide in Nitrososphaera gargensis by a cyanase enzyme that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade also containing cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite oxidizers supply cyanase-lacking ammonia oxidizers with ammonium from cyanate, which is fully nitrified by this microbial consortium through reciprocal feeding. By screening a comprehensive set of more than 3,000 publically available metagenomes from environmental samples, we reveal that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microorganisms, and suggest a previously unrecognized importance of cyanate in cycling of nitrogen compounds in the environment.

  • Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, von Bergen M, Lagkouvardos I, Karst SM, Galushko A, Koch H, Berry D, Daims H, Wagner M
2015 - Nature, Advance on-line pub

Activity and community structures of sulfate-reducing microorganisms in polar, temperate and tropical marine sediments

Temperature has a fundamental impact on the metabolic rates of microorganisms and strongly influences microbial ecology and biogeochemical cycling in the environment. In this study, we examined the catabolic temperature response of natural communities of sulfate-reducing microorganisms (SRM) in polar, temperate, and tropical marine sediments. In short-term sediment incubation experiments with 35S-sulfate, we demonstrated how the cardinal temperatures for sulfate reduction correlate with mean annual sediment temperatures, indicating specific thermal adaptations of the dominant SRM in each of the investigated ecosystems. The community structure of putative SRM in the sediments, as revealed by pyrosequencing of bacterial 16S rRNA gene amplicons and phylogenetic assignment to known SRM taxa, consistently correlated with in situ temperatures, but not with sediment organic carbon concentrations or C:N ratios of organic matter. Additionally, several species-level SRM phylotypes of the class Deltaproteobacteria tended to co-occur at sites with similar mean annual temperatures, regardless of geographic distance. The observed temperature adaptations of SRM imply that environmental temperature is a major controlling variable for physiological selection and ecological and evolutionary differentiation of microbial communities.

  • Robador A, Müller AL, Sawicka JE, Berry D, Hubert CRJ, Loy A, Jørgensen BB, Brüchert V
2015 - ISME Journal, in press

Draft genome sequence of 'Candidatus Hepatoplasma crinochetorum Ps' – a bacterial symbiont in the hepatopancreas of the terrestrial isopod Porcellio scaber

'Candidatus Hepatoplasma crinochetorum Ps' is an extracellular symbiont residing in the hepatopancreas of the terrestrial isopod Porcellio scaber. Its genome is highly similar to that of the close relative 'Cand. Hepatoplasma crinochetorum Av' from Armadillidium vulgare. However, instead of a CRISPR/Cas system it encodes a type I restriction modification system.

  • Collingro A, Kostanjšek R, Toenshoff ER, Schulz F, Schuster L, Domann D, Horn M
2015 - Genome Announc., in press

Lecture series

Mass spectral imaging of metabolites and proteins in host-microbe interactions

Manuel Liebeke
MPI für Marine Mikrobiologie
05.03.2015
12:00 h
Seminar room

Metaproteomics for sub-surface habitats and the intestinal gut microbiota

Dr. Nico Jehmlich
Helmholtz Centre for Environmental Research - UFZ, Leipzig Germany
29.01.2015
12:00 h
Seminar room DOME

First deployment of the European mobile laboratory in the course of the West-African Ebola outbreak

Kilian Stoecker
Bundeswehr Institute of Microbiology
03.11.2014
12:00 h
Seminar room