• We seek to understand

    the role of microorganisms in Earth's nutrient cycles

    and as symbionts of other organisms

  • Cycling of carbon, nitrogen and sulfur

    affect the health of our planet

  • Ancient invaders -

    Bacterial symbionts of amoebae

    and the evolution of the intracellular lifestyle

  • The human microbiome -

    Our own social network of microbial friends

  • Marine symbioses:

    Listening in on conversations

    between animals and the microbes they can't live without

  • Single cell techniques offer new insights

    into the ecology of microbes

  • Apply for the DOME International PhD/PostDoc program

Dome News

Latest publications

Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle

A critical step in the biogeochemical cycle of sulfur on Earth is microbial sulfate reduction, yet organisms from relatively few lineages have been implicated in this process. Previous studies using functional marker genes have detected abundant, novel dissimilatory sulfite reductases (DsrAB) that could confer the capacity for microbial sulfite/sulfate reduction but were not affiliated with known organisms. Thus, the identity of a significant fraction of sulfate/sulfite-reducing microbes has remained elusive. Here we report the discovery of the capacity for sulfate/sulfite reduction in the genomes of organisms from thirteen bacterial and archaeal phyla, thereby more than doubling the number of microbial phyla associated with this process. Eight of the thirteen newly identified groups are candidate phyla that lack isolated representatives, a finding only possible given genomes from metagenomes. Organisms from Verrucomicrobia and two candidate phyla, Candidatus Rokubacteria and Candidatus Hydrothermarchaeota, contain some of the earliest evolved dsrAB genes. The capacity for sulfite reduction has been laterally transferred in multiple events within some phyla, and a key gene potentially capable of modulating sulfur metabolism in associated cells has been acquired by putatively symbiotic bacteria. We conclude that current functional predictions based on phylogeny significantly underestimate the extent of sulfate/sulfite reduction across Earth’s ecosystems. Understanding the prevalence of this capacity is integral to interpreting the carbon cycle because sulfate reduction is often coupled to turnover of buried organic carbon. Our findings expand the diversity of microbial groups associated with sulfur transformations in the environment and motivate revision of biogeochemical process models based on microbial community composition.

Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, Rappé MS, Pester M, Loy A, Thomas BC, Banfield JF
2018 - ISME J, In press

Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments

Members of the phylum Acidobacteria are abundant and ubiquitous across soils. We performed the largest (to date) comparative genome analysis spanning subdivisions 1, 3, 4, 6, 8, and 23 (n=24) with the goal to identify features to help explain their prevalence in soils and understand their ecophysiology. In contrast to earlier studies, our analysis revealed that bacteriophage integration events along with transposable and mobile elements influenced the structure and plasticity of these genomes. Low- and high-affinity respiratory oxygen reductases were detected in multiple genomes, suggesting the capacity for growing across different oxygen gradients. Amongst many genomes, the capacity to use a diverse collection of carbohydrates, as well as inorganic and organic N sources (such as extracellular peptidases), were detected – both advantageous traits in environments with fluctuating nutrient environments. We also identified multiple soil acidobacteria with the potential to scavenge atmospheric concentrations of H2, now encompassing mesophilic soil strains within the subdivision 1 and 3, in addition to a previously identified thermophilic strain in subdivision 4. This large-scale acidobacteria genome analysis reveals traits that provide genomic, physiological and metabolic versatility, presumably allowing flexibility and versatility in the challenging and fluctuating soil environment.

Eichorst SA, Trojan D, Roux S, Herbold C, Rattei T, Woebken D
2018 - Environ Microbiol, in press

Microplastic-Associated Biofilms: A Comparison of Freshwater and Marine Environments

Microplastics (<5 mm particles) occur within both engineered and natural freshwater ecosystems, including wastewater treatment plants, lakes, rivers, and estuaries. While a significant proportion of microplastic pollution is likely sequestered within freshwater environments, these habitats also constitute an important conduit of microscopic polymer particles to oceans worldwide. The quantity of aquatic microplastic waste is predicted to dramatically increase over the next decade, but the fate and biological implications of this pollution are still poorly understood. A growing body of research has aimed to characterize the formation, composition, and spatiotemporal distribution of microplastic-associated (“plastisphere”) microbial biofilms. Plastisphere microorganisms have been suggested to play significant roles in pathogen transfer, modulation of particle buoyancy, and biodegradation of plastic polymers and co-contaminants, yet investigation of these topics within freshwater environments is at a very early stage. Here, what is known about marine plastisphere assemblages is systematically compared with up-to-date findings from freshwater habitats. Through analysis of key differences and likely commonalities between environments, we discuss how an integrated view of these fields of research will enhance our knowledge of the complex behavior and ecological impacts of microplastic pollutants.

Harrison JP, Hoellein TJ, Sapp M, Tagg AS, Ju-Nam Y, Ojeda JJ
2018 - 181-201. in Handbook of Environmental Chemistry, vol. 58. (Barceló, Damia; Kostianoy, Andrey G.). Springer Verlag, Berlin

Lecture series

Microbiomics of the human gut and the ocean

Peer Bork
Structural and Computational Biology Unit, EMBL Heidelberg
24.11.2017
09:30 h
Hörsaal 2, UZA 1, Althanstr. 14, 1090 Wien

The rapidly expanding universe of giant viruses

Chantal Abergel
Centre National de la Recherche Scientifique & Aix-Marseille University
29.06.2017
16:30 h
Hörsaal 2, UZA 1, Althanstr. 14, 1090 Wien

The importance of growing slowly: roles for redox-active "antibiotics" in microbial survival and development

Dianne Newman
California Institute of Technology
24.05.2017
14:00 h
Hörsaal 2, UZA1, Althanstr. 14, 1090 Wien